Карбон (материал)

Небольшой опрос

Топовые производители карбоновой пленки

Пленочные материалы под карбон выпускают многие американские, европейские и азиатские производители. Надежные и износостойкие изделия встречаются и среди китайских брендов. Вот производители, выпускающие продукцию, достойную внимания автолюбителей.

V3D

Наклейки этого бренда обеспечивают покрытие 3D. Оно долговечное и имеет приятную структуру с достоверной имитацией карбона.

KPMF

Производитель на рынке автотоваров более двадцати лет. Он выпускает множество материалов разных цветов и структуры. Есть матовая и глянцевая продукция. Встречаются изделия с блестками и иными эффектами. Компания изготавливает покрытия для разных видов работ.

Авто в карбоне

Среди них есть как для оклейки кузова целиком, так и для нанесения на простые либо сложные поверхности. Цена такой карбоновой пленки на машину велика. Погонный метр стоит в районе 3500 рублей.

Hexis

Марка из Франции с более чем двадцатилетней историей. Выпускает наклейки всевозможных оттенков и с разными эффектами. Есть как матовые, так и глянцевые изделия. Они обладают декоративным эффектом и защитными свойствами.

Пленка марки Hexis

Изделия относятся к премиум-классу. Поэтому цена данной карбоновой пленки для авто достигает 100000 и более рублей за погонный метр. Но есть у этой марки и линейка относительно бюджетной продукции, которая также обладает высокими характеристиками качества.

«Оракал»

Немецкая фирма, выпускающая карбоновые матовые и глянцевые покрытия. Они отлично держатся на поверхности и долго не теряют своих качеств. Богатая цветовая гамма, доступные цены – это то, за что любят владельцы автомобилей данный бренд. Его изделия востребованы российскими владельцами машин.

TR1

Изделия этого производителя известны дешевизной и качеством. Они долговечны и обеспечивают хорошую защиту кузовных элементов от влияния внешних факторов.Считается аналогом материалов марки 3M. Наклейки легко переносят высокие и низкие температуры.

Подходят для поклейки на мелкие детали и на весь кузов авто. Удаляются, не оставляя следов и повреждений ЛКП.

MxP Max Plus

Материалы этого бренда славятся качеством и невысокой ценой. Они одни из самых дешевых на рынке. Наклейки долговечны и легко удаляются, не оставляя следов. Производитель выпускает продукцию разной фактуры. Она имеет повышенную толщину. Поэтому изделия плохо клеятся на небольшие поверхности со сложной геометрией. Страдают от механических повреждений, даже незначительных.

Промышленность

Спортивные автомобили

Где используются карбоновые детали?

Углепластик, или карбон, — композиционный материал, углеродные нити, в составе которого, крепятся между собой с помощью полимерных смол. Карбон — очень легкий и в то же время прочный композит, при его использовании добиваются снижения массы спортивных болидов с сохранением безопасности пилотов. В последствии карбоновые детали стали очень популярны в тюнинге автомобилей: из него изготавливаются карбоновый капот, спойлеры, крылья, бампера и другие элементы машин.

Разумеется такой высокотехнологичный материал применяется в авиа-космической отрасли. Углепластиковые детали используются в гражданской, государственной и экспериментальной авиации. Применяются при строительстве различных летательных аппаратов. Композитные материалы, в частности карбон, зарекомендовал себя в малой авиации только с положительной стороны.

Отметим ряд преимуществ карбона, выделяющих его среди других материалов: 

  • сниженный вес до 40 % — в сравнении со сталью и до 20 % — в сравнении с алюминием;
  • коррозионная устойчивость;
  • устойчивость к высоким температурам и нагрузкам;
  • приятный и эстетичный внешний вид.

Однако не так давно использование углепластика / карбона в строительстве и ремонте бетонных конструкций показали превосходные результаты. В настоящее время встретить композиционные материалы можно практически в любой отрасли. Из явных недостатков углеволокна можно сразу отметить лишь его относительно высокую стоимость. Связано это в том числе с и тем, что производители карбона вынуждены покупать дорогостоящее оборудование, а также во многих случаях применяется ручной труд.

Многочисленные преимущества карбона делают возможным его применение в различных отраслях промышленности:

  • В авиации. Из углепластика создаются детали, которые значительно прочнее алюминиевых при снижении их веса до 10%.
  • В строительстве. Карбон увеличивает прочность и несущую способность бетонных конструкций.
  • В судостроении. Из карбона выполняют прочные и устойчивые к коррозии конструкции судов.
  • При строительстве железнодорожного полотна.
  • В ветроэнергетике и др.

Если вы захотели карбон на машину

Следует заметить, что при тюнинге автомобилей нередко применяют не оригинальный дорогостоящий материал, а используют имитацию карбона. Такая имитация может быть выполнена либо с помощью специальной карбоновой ПВХ-пленки, либо аквапечатью, либо нанесением аэрографии «под карбон». 

Однако тюнинг с использованием настоящих композитных материалов на сегодня не теряет популярности, так как, кроме преобразования внешнего вида автомобиля, он позволяет сохранить жесткость и прочность деталей. Иными словами, композиционные материалы, и карбон в том числе, вовсе не просто так всё интенсивнее входят в привычный мир окружающих нас вещей (с их использованием уже изготавливаются предметы интерьера, компьютерные составляющие, детали бытовых приборов и многое другое). И, конечно, применение углепластика в автоспорте является незаменимой частью. Гоночные болиды практически полностью строятся из карбона, арамида и других композитных материалов. На сегодняшний день спортивные автомобили и карбон неразлучны. 

Если вас также заинтересовал данный материал, для заказа изделий из карбона на машину вы можете связаться с представителями компании Carbon Composites. Вам обязательно ответят и проконсультируют по вопросам выбора и приобретения продукции.

Виды карбоновой пленки

С увеличением спроса на данный тип автомобильных товаров увеличилось количество производителей. Каждый месяц выпускаются новые расцветки, но стандартных видов всего несколько.

Разновидности карбоновых пленок

Наиболее распространенным типом считается пленка 2D. Она проста в производстве и стоит недорого. Изображение напечатано на материале и визуально имитирует карбоновую поверхность. Чтобы защитить состав от быстрого износа и всевозможных повреждений, на него наносят дополнительный ламинированный слой. То есть вся технология заключается в 2D печати узора карбонового покрытия, и нанесении специального защитного слоя.

Следующий вариант пленки – карбон 3D. Как правило, данный материал используется исключительно на отдельных элементах кузова транспортного средства. Она имеет рельефную поверхность. Визуально, подобный вид изделия в точности копирует фактуру карбона благодаря трехмерному изображению.

Вдобавок, качество заготовки можно оценить наощупь. Прикасаясь к поверхности можно почувствовать отдельные микроскопические полоски. В результате получается качественная поверхность, которая может изменять оттенок при взгляде на нее под разными ракурсами.

Более высокая цена у рулонов с 4D изображением. Такой материал практически не встречается в обычных магазинах. Чтобы приобрести 4D пленку карбон для авто нужно обратиться в специализированный сервис. Как правило, такие точки продажи качественных элементов для проведения ремонта и тюнинга работают в крупных городах. Ассортимент в них всегда большой.

Существует и усовершенствованные разновидности пленки карбон – 5D и 6D. Визуально такой слой смотрится на поверхности транспортного средства немного богаче предыдущих вариантов. Хотя, состоит он из тех же компонентов:

  1. Подложка;
  2. Качественная пленка;
  3. Прочный слой защиты.

Стоит современный материал достаточно дорого. Поэтому преимущественное количество владельцев использует пленку под карбон для салона автомобилей.

Чем отличаются 2D, 3D, 4 D, 5D и 6D карбоновые пленки визуально и на ощупь смотрите в видео:

Отличия пленки под 3d карбон от углеволокна.

Существует множество отличий пленки от карбоновой ткани. Дело в том, что виниловый 3d карбон и углеволокно абсолютно непохожие по составу материалы. Они производятся на разном оборудовании и предназначены для целей, которые иногда являются взаимоисключающими. В частности, углеродная ткань применяется для облегчения веса деталей, поскольку является очень прочным материалом.

Иначе говоря, настоящий карбон отлично подходит для создания конструкции. Карбоновая пленка, в первую очередь используется для оклейки различных поверхностей

Поэтому важно знать главное сходство этих материалов: необычный узор углеткани. Отличий гораздо больше:

  • Карбоновая пленка не выцветает на свету, в отличии от лака которым покрывают углепластик.
  • Пленка под карбон хорошо тянется, при этом детали из углеволокна практически не поддаются растяжению.
  • Настоящий карбон бывает только черного цвета, пленка под карбон может иметь любые оттенки. Исключение бывает, когда комбинируют стекловолокно и карбоновые нити.
  • Цена карбоновой пленки гораздо ниже деталей из настоящего карбона. Например: при одинаковой стоимости можно либо оклеить всю машину винилом, либо изготовить только одну деталь из карбона. А поскольку, часто требуется только стайлинг авто, выбор в пользу самоклеющейся автопленки очевиден.

Необходимые инструменты

История

Углеродные волокна представляют собой новое поколение высокопрочных волокон. Впервые производство углеродного волокна было предложено и запатентовано Томасом Алва Эдисоном в 1880 г. и использовать он его предложил в качестве нитей накаливания в электрических лампах. Однако, в широкое использование углеводородные волокна вошли только в 1960 годах, как наиболее подходящий материал для воздушной армии, особенно для изготовления ракетных двигателей поскольку обладают высокой термостойкостью. В последние десятилетия, углеродные волокна начали широко применяться в области аэронавтики, изготовлению спортивного инвентаря, производства автомобилей, в сфере строительства и, конечно же, музыкальных инструментов. Для получения углеродного волокна могут быть использованы специальные волокна из фенольных смол.

Углеродные волокна идеально подходят для изготовления продукции, где прочность, плотность и легкий вес являются главными характеристиками. Более того, оно также используется, когда высокая температура, химическая инертность и высокая демпфирование при производстве продукта, играет не менее важную роль. Благодаря химической инертности углеволокнистые материалы используют в качестве фильтрующих слоёв для очистки агрессивных жидкостей и газов от дисперсных примесей, а также в качестве уплотнителей и сальниковых набивок

Появления полиакрилонитрила (ПАН) и мезофазы (МП) считается важными этапом в истории углеродных волокон. Их структура и состав значительным образом влияют на свойства получаемых углеродных волокон. Не смотря на то что, основные процессы для производства углеродного волокна чем—то схожи, то для мезофазы и полиакрилонитрила используют различные условия обработки.

Примечания

Обзор ассортимента XPS CARBON от ТЕХНОНИКОЛЬ

Для создания теплоизоляции, оптимально соответствующей запросам потребителей, компания изготовила экструдированный пенополистирол нескольких видов.

  1. CARBON SOLID — плиты для транспортных развязок, кровли и фундамента. Материал обеспечивает прочное и жесткое основание, не поглощающее влагу. Плотность 50-60 кг/м3, прочность на сжатие 700 МПа.
  2. CARBON PROF — в процессе изготовления в пенополистирол добавлены наночастицы графита, которые придают материалу особую прочность и обеспечивают самую низкую теплопроводности среди модификаций Карбона. Утеплитель используется профессиональными строителями при изоляции кровли торговых центров и жилых комплексов. Материал применяется при монтаже фундамента и пола по грунту. Добавление маркировки RF означает обработку плит антипиренами, улучшающими пожарную безопасность.
  3. CARBON PROF SLOPE — набор плит, рассчитанных на создание уклона кровли от 1,7 до 8,3%. Использование утеплителя позволяет обеспечить сток воды и изменить ее направление около вентиляционных шахт и светильников. Клиновидные плиты исключают «мокрые» процессы под стяжку и ускоряют монтаж кровли.
  4. CARBON ECO — материал обеспечивает качественную теплоизоляцию и защиту от влаги и пара. Благодаря экологической чистоте он распространен в частном строительстве. Безопасность утеплителя подтверждена в лаборатории. При производстве экструзионный пенополистирол насыщается наноуглеродом, что придает плитам серебристый оттенок и дополнительную эффективность при изоляции объектов. Материал с маркировкой FAS имеет шероховатую поверхность, которая обеспечивает улучшенную адгезию со слоем штукатурки. Выемка по периметру плиты облегчает монтаж и исключает мостики холода. Добавка антипирена снижает возможность возгорания теплоизоляции. Этот тип утеплителя используется для фасадов коттеджей.

Продукция под маркой SP является специальной разработкой для конструкции под названием «шведская плита». Использование материала ECO SP позволяет ускорить монтаж и снизить теплопотери фундамента. Значительная толщина плит, составляющая 100 мм, дает возможность обеспечить качественное утепление основания и выровнять пол под финишное покрытие. Чтобы материал выдержал предполагаемую нагрузку, его прочность на сжатие составляет 400 кПа. XPS DRAIN — продукция Технониколь, созданная для изоляции фундамента. Плиты с нулевым водопоглощением используются для устройства дренажа и отвода грунтовых и дождевых вод.

Свойства

УВ имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600—2000 °С в отсутствие кислорода механические показатели волокна не изменяются. Это предопределяет возможность применения УВ в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике. На основе УВ изготавливают углерод-углеродные композиты, которые отличаются высокой абляционной стойкостью. УВ устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300—370 °С. Нанесение на УВ тонкого слоя карбидов, в частности SiC, или нитрида бора позволяет в значительной мере устранить этот недостаток. Благодаря высокой химической стойкости УВ применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др. Изменяя условия термообработки, можно получить УВ с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2·10−3 до 106 Ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.

Активацией УВ получают материалы с большой активной поверхностью (300—1500 м²/г), являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью.

Обычно УВ имеют прочность порядка 0,5—1 ГПа и модуль 20—70 ГПа, а подвергнутые ориентационной вытяжке — прочность 2,5—3,5 ГПа и модуль 200—450 ГПа. Благодаря низкой плотности (1,7—1,9 г/см³) по удельному значению (отношение прочности и модуля к плотности) механических свойств лучшие УВ превосходят все известные жаростойкие волокнистые материалы. Удельная прочность УВ уступает удельной прочности стекловолокна и арамидных волокон. На основе высокопрочных и высокомодульных УВ с использованием полимерных связующих получают конструкционные углеродопласты. Разработаны композиционные материалы на основе УВ и керамических связующих, УВ и углеродной матрицы, а также УВ и металлов, способные выдерживать более жёсткие температурные воздействия, чем обычные пластики.

Технология производства

Получить углеродное волокно можно из самых разных типов полимеров. Режим обработки определяет две основные разновидности таких материалов — карбонизированный и графитизированный типы

Важное различие существует между волокном, получаемым из ПАН и из различных видов пека. Качественные волокна углерода, как высокопрочной, так и высокомодульной категории, могут иметь несходный уровень твердости и модуль упругости

Принято относить их к разным маркам.

Волокна делают в формате нити либо жгута. Их образует от 1000 до 10000 непрерывных элементарных волокон. Ткани из этих волокон также можно выработать, как и жгуты (в этом случае число элементарных волокон еще больше). Исходным сырьем выступают волокна не только простых, но и жидкокристаллических пеков, а также полиакрилонитрила. Процесс получения подразумевает сначала выработку исходных волокон, а затем их прогревают в воздухе при 200 — 300 градусах.

В случае с ПАН такой процесс получил название предварительной обработки или повышения огневой стойкости

Пек после подобной процедуры получает такое важное свойство, как неплавкость. Частично волокна окисляются

Режим дальнейшего прогрева определяет, будут ли они относиться к карбонизированной или графитизированной группе. Окончание работы подразумевает придание поверхности необходимых свойств, после чего ее аппретируют либо шлихтуют.

Окисление в воздушной атмосфере повышает огневую стойкость не только в результате окисления. Свой вклад вносят не только частичное дегидрирование, но и межмолекулярное сшивание и иные процессы. Дополнительно уменьшается подверженность материала плавлению и улетучивание углеродных атомов. Карбонизация (в высокотемпературной фазе) сопровождается газификацией и уходом всех посторонних атомов.

Последующая их карбонизация проводится в окружении азота при 1000 — 1500 градусах. Оптимальный уровень прогрева, по мнению ряда технологов, составляет 1200 — 1400 градусов. Высокомодульное волокно придется прогревать примерно до 2500 градусов. На предварительном этапе ПАН получает лестничную микроструктуру. За ее возникновение «отвечает» конденсация на внутри молекулярном уровне, сопровождающаяся возникновением полициклического ароматического вещества.

Чем больше возрастает температура, тем больше будет и структура циклического типа. После окончания термообработки по технологии размещение молекул либо ароматических фрагментов таково, что главные оси будут параллельны волоконной оси. Натяжение позволяет избежать падения степени ориентации. Особенности разложения ПАН при термообработке определяются концентрацией привитых мономеров. Каждый тип таких волокон определяет изначальные условия обработки.

Жидкокристаллический нефтяной пек требуется долгое время держать при температуре от 350 до 400 градусов. Такой режим приведет к конденсации полициклических молекул. Их масса повышается, и постепенно происходит слипание (с образованием сферолитов). Если нагрев не останавливается, сферолиты растут, молекулярная масса увеличивается, и итогом становится формирование неразрывной жидкокристаллической фазы. Кристаллы изредка растворимы в хинолине, но обычно как в нем, так и в пиридине они не растворяются (это зависит от нюансов технологии).

Волокна, полученные из жидкокристаллического пека с 55 — 65% жидких кристаллов, текут пластически. Прядение ведут при 350 — 400 градусах. Высокоориентированную структуру формируют первоначальным нагревом в воздушной атмосфере при 200 — 350 градусов и последующим выдерживанием в инертной среде. Волокна марки Thornel P-55 приходится прогревать до 2000 градусов, чем выше модуль упругости, тем выше должна быть температура.

Научные и инженерные работы в последнее время обращают все больше внимания на технологию с применением гидрирования. Первоначальная выработка волокон часто производится гидрированием смеси каменноугольного пека и нафталовой смолы. При этом должен присутствовать тетрагидрохинолин. Температура обработки составляет 380 — 500 градусов. Твердые примеси можно удалить за счет фильтрации и прогонки через центрифугу; после этого сгущают пеки при повышенной температуре. Для производства карбона приходится применять (в зависимости от технологии) довольно разнообразное оборудование:

  • слои, распределяющие вакуум;
  • насосы;
  • герметизирующие жгуты;
  • рабочие столы;
  • ловушки;
  • проводящие сетки;
  • вакуумные пленки;
  • препреги;
  • автоклавы.

Автомобиль из прошлого века

Легковой автомобиль Honda Civic – очень хорошо известная модель во всем мире, под этим именем она производится с 1972 года.

Машина первого поколения отличалась очень компактными размерами и угловатыми формами, сейчас Цивик – это авто с богатым оснащением, изысканным дизайном и замечательными техническими характеристиками.

Применение углепластиков

Углепластик (карбон) имеет невероятно широкую сферу применения. Углеродные материалы и изделия из них можно встретить в самых разнообразных отраслях промышленности.

В строительстве, например, углеродные ткани применяются в Системе внешнего армирования. Использование углеродной ткани и эпоксидного связующего при ремонте несущих конструкций (мостов, промышленных, складских, жилых зданий) позволяет проводить реконструкцию в сжатые сроки и со значительно меньшими трудозатратами по сравнению с традиционными способами. При этом, хотя срок ремонта снижается в разы, срок службы конструкции увеличивается также в несколько раз. Несущая способность конструкции не просто восстанавливается, но и увеличивается в несколько раз.

В авиации углеродные материалы используются для создания цельных композитных деталей. Сочетание легкости и прочности получаемых изделий позволяет заменить алюминиевые сплавы углепластиковыми. Композитные детали, при их весе в 5 раз меньшем, чем аналогичных алюминиевых, обладают большей прочностью, гибкостью, устойчивостью к давлению и некоррозийностью.

В атомной промышленности углепластики используются при создании энергетических реакторов, где основным требованием к используемым материалам является их стойкость к высоким температурам, высокому давлению и радиационная стойкость

Кроме этого, в атомной отрасли особое внимание отдается общей прочности внешних конструкций, поэтому Система внешнего армирования также имеет обширное применение

В автомобилестроении карбон (или углепластик) используется для производства как отдельных деталей и узлов, так и для автомобильных корпусов целиком. Высокое отношение прочности к весу позволяет создавать безопасные, и в то же время экономичные автомобили: снижение веса автомобиля за счет углепластиков на 30 % позволяет снизить выброс CO2 в атмосферу на 16% (!), благодаря снижению расхода топлива в несколько раз.

В гражданской аэрокосмической отрасти композиционные материалы занимают очень прочные позиции. Высокие нагрузки космических полетов ставят соответствующие требования и материалам, которые используются при производстве деталей и узлов. Углеродные волокна и материалы из них, а также из карбидов работают в условиях высоких температур и давления, при высоких вибрационных нагрузках, низких температурах космического пространства, в вакууме, в условиях радиационного воздействия, а также воздействия микрочастиц и т.п.

В судостроении высокая удельная прочность, коррозионная стойкость, низкая теплопроводность, немагнитность и высокая ударостойкость делают углепластики лучшим материалом для проектирования и создания новых материалов и конструкций из них. Возможность сочетать в одном материале высокую прочность и химическую инертность, а также вибро-, звуко- и радиопоглощение обуславливает выбор именно этого материала для изготовления конструкций различных видов гражданских судов.

Одной из наиболее значимых областей применения углеродных материалов в мировой практике является ветроэнергетика. В нашей стране эта отрасль находится, по сути, в стадии зарождения, в то время как во всем мире ветряки появляются и в незаселенных районах, и в прибрежных зонах, и на морских платформах. Легкость и непревзойденные показатели прочности на изгиб углепластиков позволяют создавать более длинные лопасти, которые, в свою очередь, обладают большей энергопроизводительностью.

В железнодорожной отрасли углепластики имеют широкое применение. Легкость и прочность материала позволяет облегчить конструкцию железнодорожных вагонов, снизив тем самым общий вес составов, что позволяет в дальнейшем как увеличивать их длину, так и улучшать скоростные характеристики. В то же время углепластики могут использоваться и при строительстве железнодорожного полотна и прокладке железнодорожных проводов: высокие показатели прочности на изгиб позволяют увеличивать длину проводов, сокращая необходимое количество опор и в то же время снижая риск их провисания.

Композиционные материалы интенсивно входят в привычный мир каждого человека. Из них создаются многие товары народного потребления: предметы интерьера, детали бытовых приборов, спортивная экипировка и инвентарь, детали ЭВМ и многое другое .

Методы изготовления

Карбонопластики, а именно так еще называют композитные материалы из переплетенных нитей углеродного волокна, могут быть изготовлены 3-мя способами:

  • метод ручной формовки;
  • способ вакуумной формовки;
  • изготовление с выпеканием в автоклавах.

Изготовление карбоновых элементов в промышленных масштабах требует дорогостоящего оборудования, поэтому в домашних условиях карбон можно произвести только методом ручной либо вакуумной формовки.

Что нужно для изготовления

Для изготовления карбона вам потребуется:

  • углеродное волокно. Различается способом плетения и плотностью, измеряющейся в граммах на метр квадратный (гр/м2);
  • разделитель (к примеру, Loctite 770 NC). Применяется для легкого разделения карбонового элемента и матрицы после высыхания. Материал наносится на матрицу детали либо горизонтальную поверхность, на которую будет укладываться лицевой слой карбонового элемента. Лицевой слой может быть только один, если на обратной стороне не требуется создание красивой карбоновой текстуры;
  • матрица. Для создания горизонтальных деталей можно использовать кусок стекла либо зеркала. Поверхность должна быть как можно ровнее, так как все дефекты покрытия отформуются на изготовленной детали;
  • эпоксидная смола (к примеру, EPR 320);
  • отвердитель к смоле (как вариант – EPH 294);
  • инструмент для выкройки углеродного волокна. Можно использовать обычные ножницы, но будьте готовы к тому, что резка волокна быстро затупит инструмент. Если планируете изготавливать карбоновые детали серийно, рекомендуем купить электроножницы (эффективность продемонстрирована на видео).

Метод ручной формовки

Методика производства достаточно проста:

  • поверхность матрицы очищается от всех загрязнений;
  • равномерно по всех поверхности, в несколько тонких слоев наносится разделитель;
  • на поверхность наносится слой приготовленной смолы;
  • укладывается слой углеродистой ткани;
  • волокно пропитывается эпоксидной смолой. Между первым слоем и матрицей, а также между последующими слоями не должно быть пузырей воздуха. Распределять смолу можно обычной кисточкой, пузыри воздуха удобно выгонять валиком;
  • накладывается следующий слой, после чего процедура повторяется до набора необходимой толщины детали;
  • после укладки финального слоя горизонтальные детали можно спрессовать ответным куском стекла либо зеркала. В таком случае обе стороны детали получат глянцевую поверхность и четкую структуру карбона.

Поскольку стоимость углеродного волокна нельзя назвать демократичной, между первым и последним слоем углеродной ткани можно укладывать стекловолокно. Стеклоткань не должна быть грубой, чтобы не нарушать финальную форму.

Метод вакуумной формовки

Помимо стандартного набора материалов и инструментов, для изготовления карбоновых элементов методом вакуумной инфузии вам потребуются:

  • жертвенная ткань;
  • проводящая сетка. Используется для распределения смолы и отвода воздуха;
  • вакуумная пленка. Использовать обычную пленку нельзя, так как она не способна выдержать высокую температуру и не обладает высокой способностью к растяжению;
  • вакуумный насос. Для изготовления небольших деталей подойдет простой одноступенчатый масляный насос;
  • герметизирующий жгут;
  • спиральная трубка для подачи смолы и забора воздуха;
  • вакуумная трубка;
  • зажимы для трубок (струбцины);
  • вакуумная ловушка. Используется в качестве уловителя эпоксидной смолы, попадание которой в вакуумный насос выведет его из строя. Соорудить ловушку можно своими руками из подручных средств.

Технология вакуумной инфузии предполагает сборку «бутерброда» из карбоновой ткани и помещения его в герметичное пространство. После укладки происходит откачка воздуха и подача к заготовке смолы. Пропитанную смолою ткань оставляют под вакуумом на 20-30 минут, герметизируя трубки подачи смолы и отбора воздуха. Для начального отвержения достаточно 24 часа и комнатной температуры, после чего деталь из карбона следует отправить на постотвержение в духовой шкаф. Расписывать метод вакуумной инфузии в деталях мы не стали, так как процесс подробно показан на видео.

Применение

УВ применяют для армирования композиционных, теплозащитных, химостойких и других материалов в качестве наполнителей в различных видах углепластиков. Наиболее ёмкий рынок для УВ в настоящее время — производство первичных и вторичных структур в самолетах различных производителей, в том числе таких компаний как «Boeing» и «Airbus» (до 30 тонн на одно изделие). По причине резко возросшего спроса в 2004—2006 гг. на рынке наблюдался большой дефицит волокна, что привело к его резкому подорожанию.

Из УВ изготавливают электроды, термопары, экраны, поглощающие электромагнитное излучение, изделия для электро- и радиотехники. На основе УВ получают жёсткие и гибкие электронагреватели, в том числе ставшие популярными т. н. «карбоновые нагреватели», обогревающие одежду и обувь. Углеродный войлок — единственно возможная термоизоляция в вакуумных печах, работающих при температуре 1100 °C и выше. Благодаря химической инертности углеволокнистые материалы используют в качестве фильтрующих слоёв для очистки агрессивных жидкостей и газов от дисперсных примесей, а также в качестве уплотнителей и сальниковых набивок. УВА и углеволокнистые ионообменники служат для очистки воздуха, а также технологических газов и жидкостей, выделения из последних ценных компонентов, изготовления средств индивидуальной защиты органов дыхания. Широкое применение находят УВА (в частности, актилен) в медицине для очистки крови и других биологических жидкостей. В специальных салфетках для лечения гнойных ран, ожогов и диабетических язв — незаменима ткань АУТ-М, разработанная в начале 80-х годов и опробованная при боевых действиях в Афганистане. Как лекарственное средство применяют при отравлениях (благодаря высокой способности сорбировать яды. Например препарат «Белосорб», или АУТ-МИ на основе светлогорского сорбента), как носители лекарственных и биологически активных веществ. УВ катализаторы используют в высокотемпературных процессах неорганического и органического синтеза, а также для окисления содержащихся в газах примесей (СО до CO2, SO2 до SO3 и др.). Широко применяется при изготовлении деталей кузова в автоспорте, а также в производстве спортивного инвентаря (клюшки, вёсла, лыжи, велосипедные рамы и компоненты, обувь) и т. д.

Углеволокно применяется в строительстве в различных системах внешнего армирования (СВА) — при его помощи усиливают железобетонные, металлические, каменные и деревянные конструктивные элементы зданий и сооружений с целью устранения последствий разрушения материала и коррозии арматуры в результате длительного воздействия природных факторов и агрессивных сред в процессе эксплуатации, а также для сейсмоусиления. Суть данного метода заключается в повышении прочности элементов, воспринимающих нагрузки в процессе эксплуатации зданий и сооружений, с помощью углеродных тканей, ламелей и сеток. Усиление строительных конструкций углеволокном повышает несущую способность без изменения структурной схемы объекта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector