Погрешность, классификация погрешностей
Содержание:
- Расчёт ошибок косвенных измерений
- Определение погрешности
- Для чего используются
- Как определить
- Как найти погрешность измерения пример
- Связь абсолютной и предельной абсолютной погрешностей
- Источники погрешностей
- ВЕСА РЕЗУЛЬТАТОВ НЕРАВНОТОЧНЫХ ИЗМЕРЕНИЙ
- Общие сведения о погрешностях
- Виды маркирования
- Общие сведения о погрешностях
- Классы точности приборов
- Нормирование
- Относительная погрешность
- Пример 2
- Прочие неполадки
- Как изображают погрешности
- Внутренний тюнинг салона Ваз 2113-2114-2115
- Новости LHC
Расчёт ошибок косвенных измерений
Пусть искомая
величина Апри выбранном
методе косвенных измерений рассчитывается
по формуле:
A
= f(x1
,x2
,x3
,…,xn
) (12)
где x1,x2,…,xn
— величины, найденные в результате прямых
измерений, с учётом ошибок о которых
шла речь выше. Из-за этих ошибок величина
«А»
так же будет определяться с ошибками.
Пусть X1,X2,…,XN
— значения f(x1
,x2
,x3
,…,xn), вычисленные
для разных серий измерений (x1,x2,…,xn).
Таблица 1
Таблица коэффициентов
Стьюдента
Число измерений |
Доверительная |
|||||
0.7 |
0.8 |
0.9 |
0.95 |
0.99 |
0.999 |
|
2 |
2.0 |
3.1 |
6.3 |
12.7 |
63.7 |
636.6 |
3 |
1.3 |
1.9 |
2.9 |
4.3 |
9.9 |
31.6 |
4 |
1.3 |
1.6 |
2.4 |
3.2 |
5.8 |
12.9 |
5 |
1.2 |
1.5 |
2.1 |
2.8 |
4.6 |
8.6 |
10 |
1.1 |
1.4 |
1.8 |
2.3 |
3.3 |
4.8 |
15 |
1.1 |
1.3 |
1.8 |
2.1 |
3.0 |
4.1 |
20 |
1.1 |
1.3 |
1.7 |
2.1 |
2.9 |
3.9 |
Абсолютной ошибкой
косвенных измерений, по аналогии с
абсолютной ошибкой прямых измерений,
называют разность между истинным
значением «А» и её значениями,
полученными в результате измерений:
(13)
Размерность
абсолютной ошибки совпадает с размерностью
определяемой величины. Относительной
ошибкой косвенных измерений называют
отвлечённое число:
(14)
Иногда относительную
ошибку выражают в процентах:
(15)
Для определения
величины «А» в формулах (12)…(15) по
теории
вероятностей
следует брать величину Х, которую можно
определить двумя способами:
1) А
= Х
= (Х1
+ Х2
+…+Хn)/n
(16)
2) A
= X
= f(x1
+ x2
+…+xn)
(17)
где x1,x2
,…, xn
определяют по формуле (3). Если ошибки
измерений малы, то оба способа дают
практически тождественные результаты.
Рассмотрим способы
нахождения ошибки величины А,
определённой из косвенных измерений,
по найденным значениям оши
бок прямых измерений.
Выше отмечалось, что возможны различные
соотношения между приборной систематической
и случайными ошибками.
1-й случай. Преобладают
приборные ошибки. В этом случае можно
дать только оценку максимальной ошибки.
Формулы для нахождения предельной
ошибки косвенных измерений по внешнему
виду совпадают с формулами дифференциального
исчисления. В связи с этим для предельной
абсолютной ошибки используется формула:
(18)
а для расчёта
предельной относительной ошибки пригодна
фор
— 19 —
мула:
(19)
Формулы для расчёта
предельных ошибок некоторых часто
встречающихся функций, когда приборные
ошибки превышают случайные, приведены
в Таблице 2. Эти выражения легко
рассчитываются по формулам (18) и (19).
2-й случай. Преобладают
случайные ошибки. Для определения
среднеквадратичной ошибки теория
вероятностей даёт следующую формулу:
(20)
Относительная
ошибка вычисляется по формуле:
(21)
При выполнении
промежуточных расчётов необходимо
помнить, что число точных цифр в результате
расчётов не может увеличиваться. Поэтому
промежуточные результаты округляют,
сохраняя
1…2 избыточных
знака. При этом последующие цифры,
меньшие
5,отбрасываются;если
первая из отбрасываемых цифр больше 5,
то последняя из
оставшихся цифр увеличивается на
единицу. Ес
ли первая
отбрасываемая цифра 5, то предыдущая
цифра остаётся
без изменений,
если она чётная, и увеличивается на
единицу, если
она нечётная.
Выражения для среднеквадратичной ошибки
некоторых часто встречающихся функций
приведены в Таблице 3. Для определения
ошибок косвенных измерений используют
большую из инструментальной или случайной
ошибок прямого измерения.
Определение погрешности
Владельцев измерительных приборов интересует, прежде всего, величина максимальной погрешности, характерной для манометра. Она зависит не только от класса точности, но и от диапазона измерений. Таким образом, чтобы получить значение погрешности, нужно произвести некоторые вычисления. Например, для манометра с диапазоном измерений, равным 6 МПа, и классом точности 1,5 погрешность будет рассчитываться по формуле 6*1,5/100=0,09 МПа.
Необходимо отметить, что таким способом можно посчитать только основную погрешность.
Ее величина определяется идеальными условиями эксплуатации. На нее оказывают влияние только конструктивные характеристики, а также особенности сборки прибора, например, точность градуировки делений на шкале, сила трения в измерительном механизме. Однако эта величина может отличаться от фактической, поскольку существует также дополнительная погрешность, определяемая условиями, в которых эксплуатируется манометр. На нее может влиять вибрация трубопровода или оборудования, температура, уровень влажности и другие параметры.
Также точность измерения давления зависит от еще одной характеристики манометра — величины его вариации, которую определяют в ходе поверки. Это максимальная разница показаний измерителя, выявленная по результатам нескольких измерений.
Величина вариации в значительной мере зависит от конструкции манометра, а именно от способа уравновешивания, которое может быть жидкостным (давлением столба жидкости) или механическим (пружиной). Механические манометры имеют более выраженную вариацию, что часто обусловлено дополнительным трением при плохой смазке или износе деталей, потере упругости пружины и другими факторами.
Для чего используются
Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.
Понижающие средства разделяют по признакам эксплуатации и предназначены для:
- измерений. Они передают вторичный ток на приборы;
- защиты токовых цепей;
- применения в лабораториях. Такие понижающие средства имеют высокую классность точности;
- повторного конвертирования, они относятся к промежуточным инструментам.
Измерение
Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.
Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.
Защита
Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.
В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.
Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.
Как определить
Приближенное значение определяется следующим образом:
Число а называется приближенным значением некоторого числа А, если его значение несколько отклоняется от значения А. При этом:
- если а < А, то а – это приближение по недостатку;
- если а > А, то а – это приближение по избытку.
Разность между числом А и его приближенным значением а называют ошибкой или погрешностью. Ошибку приближенной величины а обозначают как Δа:
Δа = А — а
Модуль разности между величиной и ее приближенным значением называется абсолютной погрешностью. Ее часто обозначают греческой буквой Δ:
Δ = |А — а|
Запись приближенного результата при этом имеет вид:
а ± Δ
В простейших случаях, когда значение величины А известно точно, абсолютная погрешность вычисляется просто. Рассмотрим такой пример:
Пусть точное значение А = 2/625 = 0,0032, а его приближенное значение а = 0,003.
В этом случае абсолютная погрешность будет:
Δ = |0,0032 — 0,003| = 0,0002
Но на практике такие простые задачи встречаются редко. Гораздо чаще точное значение А вообще неизвестно. В этих случаях абсолютная погрешность определяется при помощи разных способов, в зависимости от условий конкретной задачи.
Если речь идет об измерениях, то под абсолютной погрешностью понимают разность между показаниями измерительного прибора и истинным значением величины.
Как найти погрешность измерения пример
Чтобы найти погрешность косвенных измерений, надо воспользоваться формулами, приведенными в таблице. Эти формулы могут быть выведены «методом границ».
Сначала надо вспомнить основные понятия теории погрешности.
Абсолютная погрешность физической величины ΔА — это разница между точным значением физической величины и ее приближенным значением и измеряется в тех же единицах, что и сама величина:
Так как мы никогда не знаем точного значения величины А, а лишь определяем из опыта ее приближенное значение, то и величину абсолютной погрешности мы можем определить лишь приблизительно. Наиболее просто находится максимальная величина абсолютной погрешности, которая и используется нами в лабораторных работах.
Относительная погрешность измерения εА равна:
При косвенных измерениях величину погрешности искомой величины вычисляют по формулам:
В случае, когда искомая величина находится по формуле, в которой в основном присутствуют произведение и частное, удобней находить сначала относительную погрешность. Если при этом один из множителей представляет собой сумму или разность, нужно предварительно найти его абсолютную погрешность (сложением абсолютных погрешностей слагаемых), а затем относительную.
Зная относительную погрешность, найти абсолютную погрешность измерений можно так:
«Правило ничтожных погрешностей»
при суммировании погрешностей любым из слагаемых можно пренебречь, если оно не превосходит ⅓ – ⅟ 4 от другого.
Запись результата с указанием погрешности.
Абсолютная погрешность измерений обычно округляется до 1 значащей цифры, а, если эта цифра 1, то до двух.
Результат записывается в виде:
А = Аизм ± ΔА, например: ℓ = (13 ± 2) мм.
При этом в измеренном значении следует оставлять столько десятичных знаков, сколько их в значении погрешности (последняя цифра погрешности «поправляет» последнюю цифру измеренного значения) . Значение величины и погрешность следует выражать в одних и тех же единицах!
Пример оценки погрешностей косвенных измерений № 1
Пример оценки погрешностей косвенных измерений № 2
Задания для самостоятельного решения
Задание 1. Найдите плотность вещества, из которого сделан куб со стороной 7,00 ± 0,15 см, если его масса 847 ± 2 г. Что это за вещество?
Задание 2. Найдите удельную теплоту сгорания топлива, 2,10 ± 0,15 г которого хватило, чтобы нагреть 400 ± 10 мл воды на 35°С ± 2°С. Что это за топливо?
Ивашкина Д.А., 2017. Публикация материалов с сайта разрешена только при наличии активной ссылки на главную страницу.
Источник
Связь абсолютной и предельной абсолютной погрешностей
Как уже говорилось, в большинстве случаев точное значение величины А нам неизвестно. Это означает, что точное значение абсолютной погрешности найти просто невозможно, и приходится лишь оценивать ее каким-то числом, которое называют предельной абсолютной погрешностью Δа. При этом справедливо неравенство:
Δа > Δ = |А — а|
Предельная абсолютная погрешность может иметь бесконечное количество значений. Ведь если нам удалось оценить какое-то значение Δа, то все числа, которые больше него, тоже будут удовлетворять определению предельной абсолютной погрешности. Для решения практических задач нужно стараться найти минимальное значение Δа.
Источники погрешностей
Рассмотрим различные причины возникновения погрешностей.
Математическая модель задачи является неточной
Погрешность возникает из-за того, что сам численный метод или математическая модель является лишь приближением к точному методу (например, дифференцирование). Кроме того, любая математическая модель или метод могут внести существенные погрешности, если в ней не учтены какие-то особенности рассматриваемой задачи. Модель может прекрасно работать в одних условиях и быть совершенно неприемлемой в других. Такую погрешность называют также методической. Она всегда имеет место, даже при абсолютно точных данных и абсолютно точных вычислениях. В большинстве случаев погрешность численного метода можно уменьшить до требуемого значения за счет изменения параметров метода (например, уменьшением шага дискретизации, или увеличением количества итераций).
Ошибки в исходных данных
Исходные данные задачи часто являются основным источником погрешностей. Ошибки такого типа неизбежны и проявляются в любых реальных задачах, поскольку любое измерение может быть проведено с только какой-то предельной точностью. Вместе с погрешностями, вносимыми математической моделью, их называют неустранимыми погрешностями, поскольку они не могут быть уменьшены ни до начала решения задачи, ни в процессе ее решения.
Следует стремиться к тому, чтобы все исходные данные были примерно одинаковой точности. Сильное уточнение одних исходных данных при наличии больших погрешностей в других не приводит к повышению точности конечных результатов. Если какие-то отдельные точки данных (измерения) явно ошибочные, их можно исключить из вычислений.
Вычислительные ошибки (ошибки округления)
Ошибки этого типа проявляются из-за дискретной (а не непрерывной) формы представления величин в компьютере. Вычислительные ошибки можно свести к минимуму продуманно организовывая алгоритмы.
ВЕСА РЕЗУЛЬТАТОВ НЕРАВНОТОЧНЫХ ИЗМЕРЕНИЙ
При неравноточных измерениях, когда результаты каждого измерения нельзя считать одинаково надежными, уже нельзя обойтись определением простого арифметического среднего. В таких случаях учитывают достоинство (или надежность) каждого результата измерений.Достоинство результатов измерений выражают некоторым числом, называемым весом этого измерения. Очевидно, что арифметическое среднее будет иметь больший вес по сравнению с единичным измерением, а измерения, выполненные при использовании более совершенного и точного прибора, будут иметь большую степень доверия, чем те же измерения, выполненные прибором менее точным.
Поскольку условия измерений определяют различную величину средней квадратической погрешности, то последнюю и принято принимать в качестве основы оценки весовых значений, проводимых измерений. При этом веса результатов измерений принимают обратно пропорциональными квадратам соответствующих им средних квадратических погрешностей.
Так, если обозначить через р и Р веса измерений, имеющие средние квадратические погрешности соответственно m и µ, то можно записать соотношение пропорциональности:
Например, если µ средняя квадратическая погрешность арифметического среднего, а m – соответственно, одного измерения, то, как следует из
можно записать:
т. е. вес арифметического среднего в n раз больше веса единичного измерения.
Аналогичным образом можно установить, что вес углового измерения, выполненного 15-секундным теодолитом, в четыре раза выше веса углового измерения, выполненного 30-секундным прибором.
При практических вычислениях обычно вес одной какой-либо величины принимают за единицу и при этом условии вычисляют веса остальных измерений. Так, в последнем примере если принять вес результата углового измерения 30-секундным теодолитом за р = 1, то весовое значение результата измерения 15-секундным теодолитом составит Р = 4.
Общие сведения о погрешностях
Точность полученного результата может быть охарактеризована при помощи разных видов погрешностей:
- абсолютная погрешность – разность между истинным (точным) значением величины и тем значением, которое было получено в ходе измерений;
- относительная погрешность – отношение абсолютной погрешности к истинному (точному) значению измеряемой величины; обычно эта ошибка выражается в процентах;
- приведенная погрешность – отношение абсолютной ошибки к нормирующему значению, которое имеет прибор, с помощью которого было выполнено измерение;
- основная погрешность – ошибка результата, которую обеспечивает прибор, выполняющий измерения при нормальных условиях (для каждого прибора эти условия свои);
- дополнительная погрешность – ошибка результата, которую обеспечивает прибор, работающий в условиях, отличающихся от нормальных условий;
- систематическая погрешность – постоянно возникающая ошибка, связанная с особенностями прибора;
- случайная погрешность – ошибка, появляющаяся из-за действия случайных (непредсказуемых) факторов;инструментальная погрешность – ошибка, которая связана с ошибками, допущенными в процессе изготовления прибора;
- методическая погрешность – ошибка, обусловленная особенностями выбранного метода измерений;
- субъективная погрешность – ошибка, обусловленная квалификацией и личными характеристиками персонала, выполняющего измерения;
- статистическая погрешность – ошибка, которая рассчитывается на основе теории вероятностей;
- статическая погрешность – ошибка, которая появляется при измерении неизменных величин;
- динамическая погрешность – ошибка, которая появляется при измерении меняющихся во времени величин.
Эти и другие виды погрешностей изучаются в рамках теории погрешностей.
Виды маркирования
Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.
Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.
Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.
Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.
Общие сведения о погрешностях
Точность полученного результата может быть охарактеризована при помощи разных видов погрешностей:
- абсолютная погрешность – разность между истинным (точным) значением величины и тем значением, которое было получено в ходе измерений;
- относительная погрешность – отношение абсолютной погрешности к истинному (точному) значению измеряемой величины; обычно эта ошибка выражается в процентах;
- приведенная погрешность – отношение абсолютной ошибки к нормирующему значению, которое имеет прибор, с помощью которого было выполнено измерение;
- основная погрешность – ошибка результата, которую обеспечивает прибор, выполняющий измерения при нормальных условиях (для каждого прибора эти условия свои);
- дополнительная погрешность – ошибка результата, которую обеспечивает прибор, работающий в условиях, отличающихся от нормальных условий;
- систематическая погрешность – постоянно возникающая ошибка, связанная с особенностями прибора;
- случайная погрешность – ошибка, появляющаяся из-за действия случайных (непредсказуемых) факторов;инструментальная погрешность – ошибка, которая связана с ошибками, допущенными в процессе изготовления прибора;
- методическая погрешность – ошибка, обусловленная особенностями выбранного метода измерений;
- субъективная погрешность – ошибка, обусловленная квалификацией и личными характеристиками персонала, выполняющего измерения;
- статистическая погрешность – ошибка, которая рассчитывается на основе теории вероятностей;
- статическая погрешность – ошибка, которая появляется при измерении неизменных величин;
- динамическая погрешность – ошибка, которая появляется при измерении меняющихся во времени величин.
Эти и другие виды погрешностей изучаются в рамках теории погрешностей.
Классы точности приборов
По приведенной погрешности (по классу точности) приборы делятся на восемь классов: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.
Приборы класса точности 0,05; 0,1; 0,2; 0,5 применяются для точных лабораторных измерений и называются прецизионными
(от англ. precision – точность). В технике применяются приборы классов 1,0; 1,5: 2,5 и 4,0 (технические).
Класс точности прибора указывается на шкале прибора. Если на шкале такого обозначения нет, то данный прибор внеклассный, то есть его приведенная погрешность превышает 4%.Производитель, выпускающий прибор, гарантирует относительную погрешность измерения данным прибором, равную классу точности (приведенной погрешности) прибора при измерении величины, дающей отброс указателя на всю шкалу. Определив по шкале прибора класс точности и предельное значение, легко рассчитать его абсолютную погрешность ΔX = ± гXпр / 100%, которую принимают одинаковой на всей шкале прибора. Знаки «+» и «–» означают, что по-грешность может быть допущена как в сторону увеличения, так и в сторону уменьшения от действительного значения измеряемой величины.
При использовании приборов для конкретных измерений редко бывает так, чтобы измеряемая величина давала отброс стрелки прибора на всю его шкалу. Как правило, измеряемая величина меньше. Это увеличивает относительную погрешность измерения. Для оптимального использования приборов их подбирают так, чтобы значения измеряемой величины приходились на конец шкалы прибора, это уменьшит относительную погрешность измерения и приблизит ее к классу точности прибора. В тех случаях, когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления.
Нормирование
Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й
Нормирование осуществляется по:
- абсолютной;
- относительной;
- приведенной.
Формулы расчета абсолютной погрешности по ГОСТ 8.401
Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.
Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.
Относительная погрешность
Если внимательно проанализировать определения, то становится очевидно, что ни абсолютная погрешность, ни предельная абсолютная погрешность не могут хорошо характеризовать точность, с которой выполнены измерения или вычисления. Например, если мы вычисляем или измеряем расстояние от Земли до Солнца, то абсолютная погрешность в 1 метр – это ничтожно мало. Но если мы измеряем рост человека, то точно такая же абсолютная погрешность в 1 м – это недопустимо много.
Оценить насколько «хороша» полученная абсолютная погрешность позволяет величина, называемая относительной погрешностью δ. Она равна отношению абсолютной погрешности к модулю самой величины:
δ = Δ / |А|
Аналогично определяется предельная относительная погрешность:
δа = Δа / |А|
Относительные погрешности часто вычисляются в процентах, то есть:
δ = Δ / |А| * 100%
Пример 2
Если речь идет не просто о подсчетах событий, а об измерении непрерывной величины, то там статистическая погрешность тоже присутствует, но вычисляется она чуть сложнее.
Предположим, вы хотите измерить массу какой-то новой, только что открытой частицы. Частица эта рождается редко, и у вас из всей статистики набралось лишь четыре события рождения этой частицы. В каждом событии вы измерили ее массу, и у вас получилось четыре результата (мы здесь намеренно опускаем возможные систематические погрешности): 755 МэВ, 805 МэВ, 770 МэВ, 730 МэВ. Теперь можно взять область масс от 700 до 850 МэВ и поставить на ней эти четыре точки (рис. 1). Поскольку каждая точка отвечает одному событию с данной массой, мы каждой точке присваиваем погрешность ±1 событие. То, что массы разные, — совершенно нормально, поскольку у нестабильных частиц есть некая «размазка» по массе. Поэтому, согласно теории, ожидается некая плавная кривая, и когда физики говорят про массу нестабильной частицы, они имеют в виду положение максимума этой кривой. Она тоже показана на рис. 1, но только положение и ширина этой кривой заранее неизвестны, они определяются по наилучшему соответствию с данными.
Из-за того что данных очень мало, мы можем провести эту кривую так, как показано на рисунке, а можем и немножко сместить ее в стороны — и так, и эдак будет осмысленное совпадение. Вычислив среднее значение массы, можно получить положение пика этой кривой, а также его неопределенность: 765 ± 15 МэВ. Эта неопределенность целиком и полностью обязана разным результатам измерений, она и является статистической погрешностью измерения.
Прочие неполадки
Среди других, часто возникающих неисправностей двигателя «ЗМЗ-406 Турбо» можно отметить следующее:
- Часто наблюдаются провалы тяги по причине выхода из строя катушек зажигания. После замены этих элементов работоспособность мотора восстанавливается моментально.
- Стук в силовом агрегате. Эта неполадка возникает по причине износа гидравлических компенсаторов. Как заявляет производитель, срок службы этих деталей рассчитан не менее чем на 50 тысяч километров.
- Износ поршневых пальцев, поршней и шатунных вкладышей, что также приводит к возникновению посторонних звуков в моторе.
- Силовой агрегат троит. В этом случае следует проверить свечи, катушки и компрессию.
- Наблюдается замирание силового агрегата. Чаще всего, «ЗМЗ-406 Турбо» глохнет в связи с нарушением работы проводов, датчика коленчатого вала или РХХ.
Кроме того, неоднократно наблюдаются сбои в работе сцепления «ЗМЗ-406 Турбо» и бензонасоса. В общем, причины неполадок характерны для всех отечественных моторов, включая низкое качество сборки. Тем неменее 406-я модель намного эффективнее и практичнее предшественника под номером 402. Для справки: на базе 406-го «ЗМЗ» разрабатывались моторы 405-й и 409-й серии, объемом 2,7 литра.
Как изображают погрешности
Когда экспериментально измеренные значения наносятся на график, погрешности тоже приходится указывать. Это обычно делают в виде «усов», как на рисунке слева. Такие «усы» с засечками относятся к глобальной погрешности. Если же хочется разделить статистические и систематические погрешности, то делают так, как показано на рисунке справа. Здесь засечки показывают только статистические погрешности, а полные усы во всю длину отвечают глобальным погрешностям. Другой вариант: выделение полных погрешностей цветом, как это показано, например, на рисунке с данными ATLAS по хиггсовскому бозону.
Внутренний тюнинг салона Ваз 2113-2114-2115
Доработка Ваз и Лада своими руками
тюнинг салона. Тюнинг салона ваз 2115 своими руками, внутренний тюнинг ваз 2114, советы по доработке салона. Улучшение заводских характеристик. Несмотря на то что автомобили Лада Самара 2 являются удачными, в этих машинах все равно присутствуют недостатки, поэтому автовладельцы очень часто прибегают к тюнингу ваз своими силами. Все материалы разбиты по категориям и содержат развернутые инструкции по доработке основных узлов автомобиля ваз 2115. Добро пожаловать в разделы тюнинга и доработок. Безопасная замена рулевого колеса с другим ободом Самым безопасным является рулевое колесо, установленное на автомобиль заводом-изготовителем. Именно оно было разработано специально для данной модели , прошло необходимые испытания и соответствует действующим нормативам. «Самары» последних Надежный блокиратор рулевого вала противоугонный Блокираторы рулевого вала относятся к механическим противоугонным системам или попросту замкам. Надежность и полезность механических систем очевидна и не нуждается в дополнительной рекламе. Механические «противоугонки» можно с успехом |
Стеклоподъемники с электрическим приводом — одна из любимых опций тюнингистов. Сегодня «электростеклами» уже никого не удивишь, некоторые модификации «самар» комплектуются ими даже на конвейере. Но все же чаще в руки потребителей попадают
Электропривода замка дверей всех
На х семейства «Самара», заводом-изготовителем может быть установлена система блокировки замков дверей. Она одновременно блокирует замки всех дверей при запирании ключом замка левой передней двери, а также при нажатии на кнопку блокировки
Закрытие электроприводом замка багажного отсека
Ситуацию, когда открыть багажный отсек ваз 2113 необходимо при работающем двигателе, представить нетрудно. Например, вы решили загрузить багажник, пока прогревается двигатель. Однако при работе двигателя ключ от замка крышки багажника или
Электромеханический корректор
Для изменения угла наклона пучка света фар в зависимости от загрузки на автомобиле применяется гидрокорректор фар, состоящий из главного цилиндра, закрепленного на панели приборов, и рабочих цилиндров, установленных на корпусах фар и
Дополнительный маршрутный автокомпьютер
На панели приборов ВАЗ 2115 предусмотрено специальное гнездо для установки маршрутного компьютера, закрытое заглушкой. Мы решили использовать это место по назначению. Маршрутный или, как его еще называют, бортовой или
В продаже имеется широкий выбор головных аудиоустройств. Все они оснащены радиоприемником и отличаются друг от друга типом используемого носителя звукового сигнала (компакт-кассета или компакт-диск), а также наличием возможности подключения
Установку динамиков показываем на автомобиле ВАЗ-2115, так как в х семейства «Самара» динамики устанавливаются под облицовками панели приборов, и такая работа проста. В х «Самара-2» передние динамики устанавливаются в окна внутренних панелей
Задние динамики устанавливаем на места, предусмотренные производителем в правой и левой опорах полки багажника ваз 2114. Диаметр задних динамиков такой же, как и передних — 130 мм. Спинку заднего сиденья для удобства можно снять. Длины проводов,
Всех уже достали эти противные сверчки. Давайте их лечить в месте.
1) СКРЕЖЕТ СКРИП В РУЛЕВОЙ КОЛОНКЕ!
изначально был скрежет-скрип (с железным призвуком), как мне казалось где-то в районе рулевой колонки. Был он как бы в Подсветка приборов светодиодами
Первый опыт смены подсветки был еще пол года назад. Смысл был в замене штатных лампочек накаливания, 10-ти мм светодиоды белого свечения; стирание с вставки зеленного светофильтра обычным лезвием и наклеивание синей пленки с обратной стороны. Но
Иллюстрации салона автовладельцев